If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+x^2-18=0
a = 1; b = 7; c = -18;
Δ = b2-4ac
Δ = 72-4·1·(-18)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-11}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+11}{2*1}=\frac{4}{2} =2 $
| 2x+5=7(-x+2) | | 5y=-11=19 | | 6/5=(3a+2/2a+3) | | 8(3g-+2)-3g=3(5g-4)-2 | | x2-27=6x | | 2x-(x+1)^2=(3x^2)-6 | | 5(2y-10)/2+14=19 | | 6k^2-3k-12=0 | | 5x+9=5+300 | | x^2+x=(11)/(4) | | 3-x/x+16=4 | | 11x-10(x-1)=-2 | | 17x+17=15x-3 | | 86=2n-4(14-3n) | | 3/5=4/5x+1/5 | | x+.045x=25950.03 | | 2y-2/3=-1/2 | | 2*5x-8=x+3 | | 3/m=27/45 | | 4(x+8)=10 | | 21×+3y-7,3×+11y=-7 | | (4x/5)-2=20 | | a+22a=3a-24 | | 3*10^9-x=2*4^x | | 4/6=18t | | 6n+3n=100 | | x/5+36=51 | | Y=10x+16 | | 2y+1=5+y | | 3x+(x-2)=4*5 | | p=0.5(14)+7 | | 3x-7+2x=13+4x+5 |